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SUMMARY

A vorticity velocity formulation is proposed for the solution of the equations for viscous ¯ow around a moving
pro®le. A non-inertial reference frame is used and the velocities are computed from a PoincareÂ integral formula.
The studies are directed towards the need to understand helicopter blade aerodynamics. Worked examples are given
which validate the method and programme for laminar ¯ows, at least for low Reynolds numbers. # 1998 John
Wiley & Sons, Ltd.
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INTRODUCTION

The area of unsteady separated ¯ow management has been receiving considerable attention in recent

years.1±4 In our case such studies are motivated by the need to understand helicopter blade

aerodynamics. The present paper proposes an approach somewhat different from those in the present

literature. We use a non-inertial reference frame having the advantage of a time-independent

computational domain and mesh. Moreover, following Reference 5, we employ a vorticity velocity

formulation in which velocities are computed from a PoincareÂ integral formula. In the theoretical part

of the paper we show that the new non-inertial frame formulation is very much like the existing one,

allowing the use of the same numerical procedures. As suggested in Reference 6, the computational

domain is conformally represented on the exterior of a circle, allowing an explicit formula for

boundary vorticity computation and also providing a good mesh for the ®nite difference method

employed for the transport and diffusion equation. The domain and boundary integrals involved in

velocity computation are evaluated in the transformed plane by Fourier series expansions in the polar

angle direction and by the trapezoidal rule in the radial direction. Some test ¯ows are analysed and a

comparison with experimental and numerical data is made.

INTEGRODIFFERENTIAL FORMULATION

Let us consider the general problem of an aerodynamic pro®le translating and rotating in an

incompressible viscous ¯uid at rest at in®nity. Let x0O0y0 be a reference frame related to the ¯uid and

xOy another one related to the moving pro®le. We shall denote all quantities measured in the ®rst

reference frame with a prime. For simplicity we shall also denote, when possible, the vectors

orthogonal to the ¯ow plane (free or bounded vorticity, rotation angle, angular velocity, etc.) only by

their signi®cant scalar component.
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The movement of the pro®le is given by specifying ~r00 and y as functions of time over the

considered interval [0, T], with T> 0 (see Figure 1). The relationship between the velocities in the

reference frames thus de®ned is then:

~v�~r0; t� � ~v�~r; t� d~r
0
0

dt
�t� � ~O�t� � ~r; �1�

with ~r and ~r0 the corresponding position vectors and O�t� given by

O�t� � dy
dt
�t�: �2�

Let D be the domain exterior to the pro®le (which is assumed of class c1;1, eventually excepting the

trailing edge) considered in its reference frame, so D is independent of time. The continuity and

Navier-Stokes equations for uniform density r and kinematic viscosity v can be written in terms of

velocity and pressure as

div ~v � 0; �3a�
rot ~v � ~o; �3b�

@~v
@t
� grad

v2

2
� p

r

� �
� ~o� ~v � ~fi � vD~v; �3c�

with ~v 2 c1�D� �0; T �� having continuous second-order spatial derivatives on D; p 2 c0�D� �0; T ��
having continuous ®rst-order spatial derivatives on D, and ~fi, the inertial mass forces, given by

~fi � ÿ
d2~r00
dt2
ÿ d ~O

dt
� ~r ÿ 2�O� ~v� ÿ ~O� � ~O� ~r�: �4�

The PDE (3) is subject to the following boundary and initial conditions:

~v�~r; t� � 0 �5�
on the pro®le surface;

~v�~r0; t� � O�1=r�; �6�
p�~r; t� � p1 � O�1=r� �7�

for ~r!1 and t 2 �0; T �; and

~v�r; 0� � ~v0�~r� �8�
for t � 0 and ~r 2 D.

Further, (6) is equivalent (by (1)) to

~v�~r; t� � ÿ d~r 00
dt
�t� ÿ ~O�t� � ~r � O�1=r� for ~r!1 �9�

in terms of relative velocity ~v.

In order to derive an analogue for the vorticity transport and diffusion equation in the non-inertial

reference frame, we shall take the curl of equation (3b). We obtain

@~o
@t
� �~v grad� ~o � ÿ2

d ~O
dt
� vD ~o: �10�

By considering the fact that the velocity correspondence (1) implies

~o0 � ~o� 2 ~O; �11�
we have

@ ~o
@t
� �~v grad�~o0 � vD ~o0; �12�
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which is identical with the transport and diffusion equation for inertial reference frames, with the

exception that now the advected and diffused quantity is the vorticity in the ®xed frame while the

advection velocity is related to the moving one.

Following the idea presented in Reference 5, we shall use an integral formula derived from the

PoincareÂ identity to compute velocities in the region of interest. For this we need a supplementary

assumption on ~o0, namely

~o0 � O�1=r2� for r!1 and t 2 �0; T �: �13�
By considering the ball centred on the origin O and with radius R suf®ciently large to include the

pro®le, writing the PoincareÂ identity for the outside of the pro®le and the inside of the ball yields,

after taking the limit for R!1 and making use of (13),

~v�~; t� � ÿ d~r
0
0

dt
�t� ÿ ~O�t� � ~r � 1

2p

� �
R2

~o�~r1; t� � �~r ÿ ~r1�
j~r ÿ ~r1j2

dx1dy1

� 1

2p

�
@D

�~n1 � �~v�~r1; t�� � �~r ÿ ~r1�
j~r ÿ ~r1j2

ds1 �
1

2p

�
@D

�~n1 ? ~v�~r1; t���~r ÿ ~r1�
j~r ÿ ~r1j2

ds1;

�14�

where ~n1 points outside the pro®le, ~o0 has been extended to the interior of the pro®le (CD) according

to

~o0�~r; t� � ~o�~r; t� in D;

2~O�t� in CD

�
�15�

and (3a) was taken into account.

We cannot impose both ~v ? ~n � 0 and ~v� ~n � 0 on @D in (14) according to (5), because this will

not render zero velocity on the left-hand side for points on @D, except for particular values of ~o0. As

in Reference 5, only ~v ? z~n � 0 is retained and a bounded vorticity layer of intensity

~g�~r; t� � ~n� ~v�~r; t� �16�
is placed on @D, which is equivalent to considering a discontinuity of the tangential velocity of the

same magnitude. This discontinuity will be removed later when the boundary condition for vorticity

is imposed.

Figure 1
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By taking the limit of (14) for ~r! ~rp 2 @D, one obtains a Fredholm integral equation of the second

kind for ~g:

1
2
~g�~rp; t� ÿ 1

2p
~np �

�
@D

~g�~r1; t� � �~rp ÿ ~r1�
j~rp ÿ ~r1j2

ds1

� ~np � ÿ d~r
0
0

dt
�t� ÿ ~O�t� � ~rp �

1

2p

� �
R2

~o�~r1; t� � �~rp ÿ ~r1�
j~rp ÿ ~r1j2

dx1dy1

 !
; �17�

where ~np is the outward normal vector to the pro®le surface at point ~rp. As is well known, (17) admits

an in®nity of solutions of the form

g � g0 � CgR �18�
where C 2 R and ~gR is numerically equal to the source distribution giving the Robin potential for the

pro®le. We shall see later, in the section on the pressure computation procedure, how it is possible to

select the proper solution, i.e. to determine the value of C.

With ~g known, (14) becomes

~v�~r; t� � ÿ d~r
0
0

dt
�t� ÿ ~O�t� � ~r � 1

2p

� �
R2

~o�~r1; t� � �~r ÿ ~r1�
j~r ÿ ~r1j2

dx1dy1 �
1

2p

�
@D

~g�~r1; t� � �~r ÿ ~r1�
j~r ÿ ~r1j2

ds1:

�19�

PRESSURE COMPUTATION

Once the solution of our problem in the vorticity±velocity formulation has been found, we must

revert to equation (3) to compute pressure values, which is important for almost all applications.

Although it seems possible by use of the known pressure gradient over all the computational domain,

this is not the best way, because the accumulation of numerical errors may lead to different values for

the same point, depending on the integration path (see e.g. Reference 7, p. 180). A better method

consists of considering a Neumann problem for the Poisson equation that can be derived by applying

the divergence operator to equation (3c).

For our case, since we are interested in a problem that can be con®ned to the viscous region of the

¯ow (i.e. which has solutions that can be written in terms of surface and single-layer potentials), we

put (3c) in the form

@~v
@t
� grad H � ÿ ~o0 � ~vÿ d2~r

0
0

dt2
ÿ d ~O

dt
� ~r � ~O� d~r

0
0

dt
� vD~v; �20�

with H, a Bernoulli-type variable, given by

H � p

r
� v2

2
ÿ p1

r
ÿ 1

2

d~r
0
0

dt
� � ~O� ~r�

� �2

: �21�

From (20) we derive

ÿDH � div�~o0 � ~v� �22�
and from (7) and (8) it is easy to see that

H � O�1� as r!1 �23�
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As far as the Neumann boundary condition is concerned, we shall take the scalar product of (20) by

~n1, the normal vector corresponding to point ~r1 2 @D, and pass to the limit for ~r! ~r1. We obtain

@H

@n
� o0gÿ ~n ?

d2~r
0
0

dt2
ÿ ~O� d~r

0
0

dt
� d ~O

dt
� ~r

 !
ÿ v

@o0

@t
; �24�

in which we have dropped the index `1' for clarity.

The Neumann problem just derived is subject to a compatibility condition due to the behaviour at

in®nity requested by (23). If we denote the right-hand side of equation (24) by g, this condition can be

written as � �
D

div� ~o0 � ~v�dxdy�
�
@D

g ds � 0: �25�

One can easily show that this is identically satis®ed by applying the ¯ux divergence theorem to the

®rst term of equation (25). It is very important for the numerical procedure to maintain this property,

otherwise the computed pressure will diverge at in®nity as ln r.

In a similar way we can derive a relation for the tangential derivative of H in the regular points of

@D:

@H

@t
� @g
@t
ÿ ~r d2~r

0
0

dt2
ÿ ~O� d~r

0
0

dt
� d ~O

dt
� ~r

 !
ÿ v

@o0

@n
: �26�

For physical reasons we shall impose that H be continuous over the pro®le trailing edge. By

integration, after applying the Stokes theorem to the term containing d ~O=dt, this leads to

d

dt

�
@D

gds� 2
dO
dt

meas �CD� ÿ v

�
@D

@o0

@n
� 0: �27�

On the other hand, integration of the vorticity transport and diffusion equation over D gives, after

some simple transformations,

d

dt

� �
D

o0dxdy � v

�
@D

@o0

@n
ds: �28�

(This shows that when there is no advection ¯ux through the domain boundary, the only way vorticity

can enter is by diffusion from the solid surface.)

From (27) and (28), via integration in time, one obtains� �
D

o0dxdy�
�
@D

gds� 2O meas �CD� � const:; �29�

which represents the law of total vorticity conservation over D (if one takes (15) for the de®nition of

vorticity over 2). In particular, if the constant is zero at t � 0, it will remain so at any later time. We

shall assume from now on that this is true for our case.

Now we are able to evaluate the constant C that appears in (18). It is well known from potential

theory that for the Robin source distribution we have�
@D

gRds 6� 0; �30�
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so we can always set C from

C �
� �

D

o0dxdy�
�
@D

g0ds� 2O meas �CD�
� ���

@D

gRds; �31�

which completes the procedure for the bounded vorticity computation.

BOUNDARY CONDITION FOR VORTICITY

There are many local formulae for computing the boundary vorticity at solid surfaces from data

inside the domain, most of them based on Taylor series expansions and interpolation techniques. Wu5

gives a detailed discussion of such methods, showing that the ®rst-order formulae do not account for

the pressure gradient correctly while the second-order ones do not satisfy the vorticity conservation

principle proved in the previous section. From his point of view this may be the cause of unstable

behaviour of the latter.

Following these ideas, he proposes a way to compute the boundary vorticity using values of ~g
which ensure the impermeability of the solid wall. This bounded vorticity is considered to be

uniformly spread over a distance equal to half the local spatial step in the direction normal to the solid

wall, `smearing out' the tangential velocity discontinuity. The values thus obtained are used as the

boundary vorticity for the transport and diffusion equation. Bearing in mind the results of the

previous section, it follows that the total vorticity conservation law is now satis®ed. On the other

hand, there is no local restriction on the normal derivative of the vorticity at the boundary, so the

pressure gradient along the solid wall is free to develop.

However, when used with an implicit discretization for the transport and diffusion equation, this

does not ensure the stability of the method, because the wall vorticity computed in this way fails to

satisfy the implicit part of the discrete equation. It becomes necessary to employ underrelaxation

techniques in an iterative algorithm performed at each time step in order to properly couple the

transport and diffusion with the boundary vorticity computation formula. This is also done by

El Refaee et al.6 for the method extended to compressible ¯ow.

An alternative method to underrelaxation is presented in References 8 and 9, in the framework of

generalized formulations in Sobolev spaces, for the Stokes and Navier±Stokes problems. The authors

construct a set of o-®elds that satisfy the impermeability condition at the wall, as well as the

homogeneous equation formed with the implicit operator of the discretized transport and diffusion

equation, and whose traces on the solid boundary form a basis of its discretized space. This basis is

then used to correct the solution for the new time level in order to satisfy the no-slip condition while

preserving the other two properties.

For an explicit ®nite difference method the implicit operator for interior points is the identity, so

the method of Wu5 is applicable without any other precautions. Taking into account its simplicity and

improved behaviour over classical methods, as well as the advantage of con®ning the computational

area to the viscous region of the ¯ow, we decided on its use in the present research, together with the

explicit difference scheme of Leonard (described in the section on the numerical procedure).

In the future we intend to develop a new method using characteristics for modelling the vorticity

transport and an implicit ®nite difference scheme for the diffusion, with boundary conditions for

vorticity imposed in a coupled manner as in References 8 and 9. The use of the PoincareÂ identity will

preserve the advantage of con®ning the calculations to the viscous region of the ¯ow. Alternatively, a

®nite element method can be devised on the same principle, employing the generalized form of the

PoincareÂ identity described in References 10 and 11.
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NUMERICAL PROCEDURE

Let us consider, as suggested in Reference 6, the conformal mapping z � z�z� of the domain D onto

the exterior of the unit circle (with z � x� iy in the pro®le plane and z � x� iZ in the circle plane).

Denoting by vx and vZ the covariant components of ~v in the curvilinear co-ordinate system de®ned by

the conformal mapping, one obtains from equations (3a), (3c) and (12)

@vx
@x
� @vZ
@Z
� 0; �32a�

@vZ
@x
� @vx
@Z
� o

J
� o0 ÿ 2O

J
; �32b�

@

@t

o0

J

� �
� @

@x
�vxo0� �

@

@Z
�vno

0� � v
@2o0

@x2
� @

2o0

@Z2

� �
; �32c�

in which J � x2
x � x2

y is the Jacobian of the conformal mapping. Moreover, the boundary conditions

are the same at in®nity provided that dz=dz! 1 for r!1. This suggests that we may consider a

®ctitious problem in the xÿ Z plane with vx, vZ and o0 as unknown functions, very much like the

original one but with advantageous geometric characteristics (for reasons we shall see later). In fact,

it can be shown that one may obtain the covariant components of the velocity from equation (19) by

replacing o0 by o0=J , the x±y co-ordinates by x±Z and the transport velocity terms by their covariant

components in the new system according to

vx1 �
dx00
tt

cos y� dy00
dt

sin y
� �

xx � ÿ dx00
dt

sin y� dy00
dt

cos y
� �

yx ÿ O�xxZ � yyZ�; �33a�

vZ1 �
dx00
dt

cos y� dy00
dt

sin y
� �

xZ � ÿ dx00
dt

sin y� dy00
dt

cos y
� �

yZ ÿ O�xxx � yyx�: �33b�

A similar procedure can be applied to the Fredholm integral equation (17). From now on we shall

work in the circle plane and use the term `velocity' for the vector de®ned in this plane by the

covariant components vx, and vZ.

Let R and W be a set of quasi-polar co-ordinates, allowing for mesh stretching in the radial

direction, given by

x � j � �R� cos W; Z � j�R� sin W; �34�

in which j: �0; 1� ! �1;1� is a monotonically increasing function satisfying j�0� � 1 and

limW!�R� � 1 (in numerical practice the in®nity will be replaced by a large enough radius Rmax).

The vorticity transport and diffusion equation becomes

@

@t

jj0

J
O

� �
� @

@R
�jvRo� �

@

@R
�j0vRo� � v

@

@R
j
j0
@o
@R

� �
� @

@W
j0

j
@o
@W

� �� �
; �35�
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with vR and vW the (®ctitious) velocity projections on the corresponding co-ordinate directions. For the

velocity components we have

vR�R; W� � ÿvR1 �
1

2p

�2p

0

g�W1�
sin�W1 ÿ W�

j2�R� ÿ 2j�R� cos�Wÿ W1� � 1
dW1

� 1

2p

�1

0

�2p

0

o
J
�R1; W1�

j�R1� sin�W1 ÿ W�
j2�R� ÿ 2j�R�j�R1� cos�Wÿ W1� � j2�R1�

j�R1�j0�R1�dR1dW1; �36a�

vR�R; W� � ÿ vR1�
1

2p

�2p

0

g�W1�
j� ÿ cos�W1 ÿ W�

j2�R� ÿ 2j�R� cos�Wÿ W1� � 1
dW1

� 1

2p

�1

0

�2p

0

o
J
�R1; W1�

j�R� ÿ j�R1� cos�W1 ÿ W�
j2�R� ÿ 2j�R�j�R1� cos�Wÿ W1� � j2�R1�

j�R1�j0�R1�dR1dW1; �36b�

in which vR1 and vW1 are the projections in the directions B and W respectively of the velocity vector

(vx1; vZ1) de®ned above.

Suppose that we have divided the computational domain into equal intervals in the W-direction. We

shall take, as suggested in Reference 6, the following expressions for the free and the bounded

vorticity respectively:

jj0o
J
�R; W� � 1

2
A0�R� �

PN
k�1

�Ak�R� cos�kR� � Bk�R� sin�kW��; �37a�

g�W� � 1
2
a0 �

PN
k�1

�ak cos�kW� � bk sin�kW��: �37b�

The integrals in the W-direction can now be evaluated using the residuum theorem. One obtains

vR�R; W� � ÿvR1 �
1

2j�R�
PN
k�0

bk

jk�R� cos�kW� ÿ ak

jk�R� sin�kW�
� �

� 1

2j�R�
PN
k�1

f�I K
B �R� � J k

B�R�� cos�kW� ÿ �I k
A�R� � J k

A�R�� sin�kW�g; �38a�

vR�R; W� � ÿvR1 �
1

2j�R�
PN
k�0

ak

jk�R� cos�kW� ÿ bk

jk�R� sin�kW�
� �

� 1

2j�R� I0
A �

PN
k�1

f�IK
A �R� ÿ J k

A�R�� cos�kW� � �I k
B�R� ÿ J k

B�R�� sin�kW�g
� �

; �38b�

with

I k
A�R� �

�R
0

j�R1�
j�R�

� �k

Ak�R1�dR1; k � 0; . . . ;N ; �39a�

J k
A�R� �

�1

R

j�R�
j�R1�
� �k

Ak�R1�dR1; k � 0; . . . ;N ; �39b�

and similar expressions for I k
B and J k

B . At this point we can see an advantage resulting from the use of

the conformal mapping: it allows us to change the form (19) of the velocity representation to (38), in

which the singularities are eliminated by integration in the W-direction. The integrals in the R-

direction can now be easily evaluated by the usual numerical procedures, e.g. by the trapezoidal rule.

However, the main advantage lies in the properties related to the Fredholm integral equation (17).

In the ®rst place the Robin potential for the circle is induced by a constant source distribution. With

gR constant, imposition of the total vorticity conservation law is achieved by simply distributing the
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vorticity excess from equation (31) uniformly over the circumference. Moreover, when we look for a

solution g0 of zero mean value (which is equivalent to considering a0 � 0 in (38a)), the integral in the

left-hand member of equation (17) vanishes and the Fredholm integral equation becomes an explicit

formula for boundary vorticity computation:

g0�W� � ÿ2vW1 ÿ
PN
k�1

�J k
A�0� cos�kW� � J k

B�0� sin�kW��: �40�

This outstanding property of the circle considerably simpli®es the numerical algorithm and is the

main reason for the conformal mapping usage.

The vorticity transport and diffusion equation (35) is discretized using an explicit scheme with

high-order upwind differencing for the advection terms and the usual centred differencing for the

diffusion ones (see Reference 12, the algorithm of Leonard (1979)). The scheme can be written in

¯ux terms as

1

Dt

ojj0

J

� �n�1

i;j

ÿ ojj0

J

� �n

i;j

" #
� 1

DW
��FH�ni�1=2;j ÿ �FH�niÿ1=2;j� �

1

DR
��FV �ni;j�1=2 ÿ �FV �ni;jÿ1=2�

�41�
and the ¯uxes are given by

�FH�i�1=2;j �

ÿ J

j
vW

� �
i�1=2;j

~oi�1;j � ~oi;j

2
ÿ q

3
� ~oi�1;j ÿ 2 ~oi;j � ~oiÿ1;j�

� �
�v

j0

j

� �
i�1=2;j

oi�1;j ÿ oi;j

DW
for �vW�i�1=2;j 4 0;

ÿ J

j
vW

� �
i�1=2;j

~oi�1;j � ~oi;j

2
ÿ q

3
� ~oi�2;j ÿ 2 ~oi�1;j � ~oi;j�

� �
�v

j0

j

� �
i�1=2;j

oi�1;j ÿ oi;j

DW
for �vW�i�1=2;j < 0;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�42�

�FV �i;j�1=2 �

ÿ J

j0
vW

� �
i;j�1=2

~oi;j�1 � ~oi;j

2
ÿ q

3
� ~oi;j�1 ÿ 2 ~oi;j � ~oi;jÿ1�

� �
�v

j
j0

� �
i;j�1=2

oi;j�1 ÿ oi;j

DW
for �vW�i;j�1=2 4 0;

ÿ J

j0
vR

� �
i;j�1=2

~oi;j�1 � ~oi;j

2
ÿ q

3
� ~oi;j�2 ÿ 2 ~oi;j�1 � ~oi;j�

� �
�v

j
j0

� �
i;j�1=2

oi;j�1 ÿ oi;j

DR
for �vW�i;j�1=2 5 0;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�43�

with ~o � jj0o0=J . Here q is chosen to increase accuracy (0�5) or to optimize steady state ¯ow

computation (0�375, the QUICK scheme of Leonard). This discretization, which makes use of the

transport velocities related to the computational co-ordinate system, was found to have much better

behaviour than the more straightforward one derived directly from (35) with j0vW and jvR as

transport velocities.
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The stability criterion is the same as for the ®rst-order upwind scheme; for two-dimensional ¯ows

we have used

Dt 5
1

JvR=j0DR� JvW=jDW� 2Jv=�j0DR�2 � 2Jv=�jDW�2 : �44�

The vorticity on the solid boundary is computed using values of g as indicated in the previous section.

The formula is

oi;1 �
2

j0DR
gi: �45�

A special technique is employed in order to reduce storage requirements. Only the non-zero

vorticity ®eld is stored in a one-dimensional compact array, provided with a data structure that allows

the programme to restore the original distribution only in the work area, for the ®nite difference

scheme application. Only new vorticity values greater in modulus than a `threshold' value established

by the user are stored in the compact array for the vorticity at the new time level. The velocities are

computed, when needed, from equations (38), so the whole velocity ®eld storage is no longer

necessary. However, one must keep in memory the values of coef®cients Ak and Bk for the whole

mesh, which, besides geometry data, involves most of the memory requirements of the programme.

Equations for pressure analogues to (22), (24) and (26) can be derived for the ®ctitious problem in

the circle plane. The Bernoulli variable becomes

H � p

r
� J

2
�v2

x � v2
Z� ÿ

p1
r
ÿ J

2
�v2

x1 � v2
Z1�: �46�

One obtains, after passing to x±Z variables,

DH � 1

jj0
@

@R
�jvWo0� ÿ

@

@W
�j0vRo0�

� �
�47�

and for the ®rst-order derivatives

1

j0
@H

@R
� ÿaR1 ÿ

@vR
@t
ÿ vWo

0 � v
1

j
@o0

@W
; �48a�

1

j0
@H

@R
� ÿaW1 ÿ

@vW
@t
� vRo

0 ÿ v
1

j0
@o0

@R
; �48b�

where ~aR1 and ~aW1 correspond to the covariant components of the acceleration-type terms

d2~r
0
0=dt2 ÿ O� d~r

0
0=dt � d ~O=dt � ~r given by the movement of the mobile system and projected on its

axes (similar to transport velocities).

In the early stages of programme development the right-hand side members of equations (47) and

(48) were evaluated from the known solution at the corresponding time level by centred ®nite

differences in the directions R and W. A better (and more ef®cient) approach consists of using the

¯uxes de®ned previously (equations (45) and (46)) according to the relations

1

j0
@H

@R

� �
i�1=2;j

� ÿaR1 ÿ
@vR
@t
� 1

j0
FH

� �
i�1=2;j

; �49a�

1

j
@H

@W

� �
i;j�1=2

� ÿaW1 ÿ
@vW
@t
ÿ 1

j
FV

� �
i;j�1=2

�49b�
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allowing us to write

�DH�i�1=2;j�1=2 �
1

jj0
1

DR
j

j0�FH�
� �

i�1=2;j�1

ÿ j
j0�FH �
� �

i�1=2;j

" #(

� 1

DW
j0

j�FV �
� �

i�1;j�1=2

ÿ j0

j�FV �
� �

i;j�1=2

" #)
�50�

for all i � 1; . . . ; nW and j � 1; . . . ; nR, the discretized divergence of acceleration terms being

neglected by virtue of their theoretical properties.

A Neumann problem can be written for H by considering (47) or (50) and applying (48a) or (49a)

for R � 0 or j � 1 respectively. In the second case, noting that the right-hand terms involve the

horizontal ¯uxes at j � 1 and that the solution does not effectively depend on them (this is typical for

Neumann problems constructed with gradients of the unknown function: the in¯uence of the normal

derivative at the boundary is cancelled by the surface-distributed source in its immediate proximity),

we may simply set them to zero in both the boundary normal derivative and equation (50) written for

j � 1.

As stated earlier care must be taken in satisfying the compatibility condition in both variants to

avoid solution divergence at in®nity. This implies in the ®rst place that one should use an integration

method compatible with the discretized derivative used in (47) or (50). Moreover, since the

computational domain is bounded and therefore the vorticity will not be null at the out¯ow boundary,

a ®ctitious row of surface-distributed sources must be considered to take into account the neglected

part of the wake. This is achieved by applying (47) or (50) with a supplementary row of zero vorticity

outside the mesh. For low Reynolds numbers such as 40, ignoring this problem will result in pressure

shifts of as much as 50 per cent of the correct values.

A technique similar to that used for velocity computation is employed (Fourier series for the W-

direction and numerical integration (trapezoidal rule) for the R-direction). The corresponding Fourier

series for the source terms are

jj0DH � 1
2
A0�R� �

PN
k�1

�Ak�R� cos�kW� � Bk�R� sin�kW��; �51�

j
j0
@H

@R

� �
R�0

� 1
2
a0 �

PN
k�1

�ak cos�kW� � bk sin�kW��: �52�

The property of the circle highlighted above (for velocity computation) allows us to write the solution

in terms of surface and single-layer potentials without solving any Fredholm integral equation. One

obtains, after integrating with the residuum theorem in the W-direction,

p�R; W�
r
� p1

r
� J

2
�v2

R1 � v2
W1� ÿ

J

2
�v2

R � v2
W� � 1

2
a0E0�0; R� � 1

2

�1

0

A0�R1�E0�R1; R�dR1

ÿ PN
k�1

1

2k
akEk�0; R� �

�1

0

Ak�R1�Ek�R1; R�dR1

� �
cos�kW�

ÿ PN
k�1

1

2k
bkEk�0; R� �

�1

0

Bk�R1�Ek�R1; R�dR1

� �
sin�kW�; �53�

in which ak and bk are given by

ak � 2ak �
�1

0

Ak�R�1�Ek�R1; 0�dR1; bk � 2bk �
�1

0

Bk�R�Ek�R1; 0�dR1 �54�
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and Ek stand for

E0�R1; R� � ln j�R� for R � R1

ln j�R1� for R < R1

� �
for k � 0; �55a�

Ek�R1; R� � �j�R1�=j�R��k for R � R1

�j�R�=j�R1��k for R < R1

� �
for k � 1; . . . ;N : �55b�

An alternative method of pressure computation consists of integrating, relative to W, equation (48b)

(or (49b)) written for points on the boundary. If one wants to maintain the uniformity of H in the

numerical scheme by virtue of discretized total vorticity law conservation, equation (49b) must be

used written as

@H

@W

� �n

i;1

� ÿ�aW1�ni;1 ÿ
gn�1

i

Dt
ÿ �FV �i;3=2: �56�

As one can see, the tangential velocity time derivative is computed by the difference between the

tangential velocity induced by the new vorticity ®eld in the presence of the impermeable (in the

mobile frame) body and before imposing the no-slip condition, and the tangential velocity given by

the old vorticity ®eld, zero since the latter has already been subjected to this condition. Summing

equation (56) over all the boundary yields the numerical equivalent of the total vorticity conservation

law (29) provided that the evaluation of its right-hand side is made using the same ¯uxes FV as the

(conservative) ®nite difference scheme (41)±(43) for points on the second row.

The integration is performed in the spectral domain; the above considerations show that the

constant component of the right-hand side identically vanishes. As will be shown in the next section,

the values given by this method are closer to the results of the Neumann problem than the ones

obtained in a more straightforward way which cancels the @vW=@t (by virtue of the no-slip boundary

condition), especially when high accelerations are imparted to the pro®le.

RESULTS

The ®rst test case chosen was the steady ¯ow around a circular cylinder at Reynolds number 40. A

128660 polar mesh was used, extended to a maximum radius of 12�5 (all dimensions are related to

the cylinder diameter) stretched towards the cylinder surface. The comparison results were taken

from experimental data of Grove et al.13 Figure 2 shows the streamline pattern. The drawn level

values are stretched towards the reference value on the solid surface, allowing a better visualization

of the wake details. One can measure the wake parameters and a comparison with the experimental

ones shows a good coincidence. For example, the computed wake length (measured from the cylinder

to the junction of downstream lines) gives an approximate value of 2�55 compared with 2�75. The

position of the wake vertex centre relative to the cylinder axis is (from a raw measurement) (1�2, 0�3)

compared with (1�2, 0�32). The pressure values are shown in Figure 3. Both methods for discretizing

the source terms of the pressure Neumann problem give almost the same results (the `global

computed pressure' curve), showing a good coincidence with the measured ones. The results of the

local method are also in good agreement with the global one and even better with experiment,

provided that an appropriate translation is made. The computed pressure, friction and total drag

coef®cients are respectively 1�04, 0�53 and 1�57; the last is to be compared with the experimental

value of 1�60.

For the non-stationary movement we have chosen the case of a 20 per cent thick elliptic pro®le

performing an oscillatory translation and rotation movement in viscous ¯uid, superposed over a
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uniform one along the Ox0 axis in its negative sense. In the following considerations all parameters

are adimensionalized with respect to the ellipse chord size and the velocity of the uniform movement

and the classical de®nitions were taken for force and moment coef®cients.

The Reynolds number is 40. We have chosen two types of movement: an oscillatory translation

with a vertical velocity amplitude of 0�1 (called from now on `translation') and a combination of

translation and rotation, in which a rotation oscillation is added, with the same frequency, an

angular amplitude of 0�05 rad (2�9�) and an opposite phase (called from now on `rotation'). For

each, three (adimensional) frequencies were considered: 0�0795, 0�1592 and 0�3183. The same

cases were chosen in Reference 14 and a comparison with the results therein will be made. We shall

also call, for convenience, a `separation point' any point on the pro®le surface for which o � 0,

although this is somewhat inappropriate for the leading edge impact point.

Figure 2

Figure 3
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The non-stationary movement starts with the pro®le in uniform movement at zero incidence, for

which the ¯ow has been previously computed.

Theoretical calculations were performed for the inviscid case under the hypothesis of zero

circulation movement. In fact, if one prevents the vorticity appearance by blocking the no-slip

boundary condition application, the programme simulates such a ¯ow by virtue of the total vorticity

conservation law, involving in this case only the pro®le inner vorticity and the bounded one.

Figures 4 and 7 show a synoptic image of the lift coef®cient variation (the most representative) for

the highest-frequency case. As expected, the inviscid case yields zero average lift; the period vertical

force is a virtual mass effect. On the other hand, the stationary viscous ¯ow exhibits a lift force,

showing that a non-zero circulation is created around the pro®le. However, it is only half the value

predicted by applying the Kutta condition at the trailing edge and this is caused by its rounded form

as well as by the low Reynolds number.

For the translation case, `summing' the mentioned curves yields approximately the curve for

oscillatory movement in viscous ¯uid. This means that the non-stationary in¯uence is essentially

limited to virtual mass effects; for the rest the ¯ow establishes the lift corresponding to the current

incidence value in a quasi-stationary manner. A comparison between different methods of pressure

computation shows a good coincidence. As stated in the previous section, the use of the @g=@t (local

method 2) term slightly improves the results over the usual approach (local method 1). These results

are in good agreement with Reference 14, except for a factor of two; this is due, in our opinion, to an

adimensionalization inadvertence (the lift coef®cient is probably adimensionalized with respect to

rv2 instead of rv2=2).

The separation point evolution diagrams for the translation case are shown in Figures 5 and 6.

While the leading edge point position does not differ much from inviscid ¯ow theoretical predictions,

the trailing edge point is more in¯uenced by the viscous effects and thus larger differences occur, as

one would expect. The separation point diagrams are in good agreement with Reference 14.

Figure 4
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Figure 5

Figure 6

Figure 7
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Similar considerations apply to the rotation case. However, some differences appear owing to the

in¯uence of rotation on the circulation behaviour; for example the `sum' of theoretical non-stationary

lift and stationary lift for viscous ¯ow does not yield any longer the lift curve for non-stationary real

movement.

A discontinuity in the separation point position appears owing to a discontinuity in the angular

velocity value O at the start of the oscillatory movement, which in turn gives a discontinuity in the

bounded circulation value (constant C in equation (18)). It is rapidly damped for the leading edge

point but persists for a longer time for the trailing edge one (see Figures 8 and 9), where the vorticity

transport is slower.

No such phenomena are shown in Reference 14 and the coincidence is less accurate. Our results

indicate a more regular shape of the leading edge separation point curve with a smaller amplitude

(approximately 3� in comparison with 5�). These differences probably result from the different ways

of choosing the bounded circulation value (which, for Reference 14, means choosing an appropriate

streamfunction solution for a given vorticity ®eld). Oshima et al.14 do not make any reference to the

total vorticity conservation law; they compute the streamfunction as the sum of a potential term,

corresponding to the zero-circulation inviscid movement around the ellipse, and a perturbation term,

given by the vorticity ®eld and also yielding zero circulation on the pro®le surface. This is equivalent

to setting C � 0 in (18) and may be the cause of the difference in the results.

However, we think that the discontinuity is overestimated owing to the explicit character of this

method. Indeed, a change in movement parameters at time level n is re¯ected in the boundary

conditions, while the interior vorticity values are computed using the old velocities (with old

movement parameters). Such delays introduce only O�Dt� errors in the numerical scheme, which is

unimportant when Dt is very small (and this is our case, because of the CFL stability requirement)

and the variable variation is suf®ciently regular, but may become important when we deal with

discontinuities.

Figures 10 and 11 show the lift hysteresis curves for all three frequencies. It can be seen that there

is an almost proportional relationship between the hysteresis phenomenon amplitude and the

frequency and this may be correlated with the fact that no separation phenomena occur, so that the

pro®le acceleration effects remain predominant. Again, while the translation case shows a good

coincidence with Reference 14 (regardless of the factor of two mentioned earlier), the rotation case

Figure 8
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does not yield the same accuracy; in particular, the proportionality mentioned above does not hold for

results presented therein. In other respects (e.g. lift amplitude) the agreement is rather good, with no

need for the adimensionalization correction coef®cient of two.

In this form the method did not allow for high-Reynolds-number ¯ow treatment. For this purpose it

must be improved by introducing an implicit scheme in order to transcend the CFL stability

condition, which is very restrictive when ®ne meshes are used.

Figure 9

Figure 10
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CONCLUSIONS

This is a ®rst step towards the proposed aim of computing the viscous ¯ow around a moving pro®le.

The examples presented in the previous section validate the method and programme for laminar

¯ows, at least for low Reynolds numbers.

Although in this form the programme allows for memory and computing time savings by reducing

the computational domain, we feel that a ®nite element formulation is more suitable for this purpose.

A turbulence model must be used to compute the high-Reynolds-number ¯ows useful for

applications. Following Reference 6, compressibility corrections could not be added, thus completing

the procedure for helicopter blade non-stationary ¯ow simulation (under the assumption of blade

element plane ¯ow).
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